概要:例6 设g(x)=3x2-2x+1,f(x)=x3-3x2-x-1,求用g(x)去除f(x)所得的商q(x)及余式r(x).解法1 用普通的竖式除法解法2 用待定系数法.由于f(x)为3次多项式,首项系数为1,而g(x)为2次,首r(x)= bx+ c.根据f(x)=q(x)g(x)+r(x),得x3-3x2-x-1比较两端系数,得 例7 试确定a和b,使x4+ax2-bx+2能被x2+3x+2整除.解 由于x2+3x+2=(x+1)(x+2),因此,若设f(x)=x4+ax2-bx+2,假如f(x)能被x2+3x+2整除,则x+1和x+2必是f(x)的因式,因此,当x=-1时,f(-1)=0,即1+a+b+2=0, ①当x=-2时,f(-2)=0,即16+4a+2b+2=0, ②由①,②联立,则有练习十1.计算:(1)(a- 2b+c)(a+2b-c)-(a+2b+c)2;(2)(x+y)4(x-y)4;(3)(a+b+c)(a2+b2+c2-ab-ac-bc).2.化简:(1)(2x-y+z-2c+m)(m+y-2x-2c-z);(2)(a+3b)(a2-3ab
整式的乘法与除法,标签:儿童科普故事,儿童科普读物,http://www.99youjiao.com例6 设g(x)=3x2-2x+1,f(x)=x3-3x2-x-1,求用g(x)去除f(x)所得的商q(x)及余式r(x).
解法1 用普通的竖式除法
解法2 用待定系数法.
由于f(x)为3次多项式,首项系数为1,而g(x)为2次,首
r(x)= bx+ c.
根据f(x)=q(x)g(x)+r(x),得
x3-3x2-x-1
比较两端系数,得
例7 试确定a和b,使x4+ax2-bx+2能被x2+3x+2整除.
解 由于x2+3x+2=(x+1)(x+2),因此,若设
f(x)=x4+ax2-bx+2,
假如f(x)能被x2+3x+2整除,则x+1和x+2必是f(x)的因式,因此,当x=-1时,f(-1)=0,即
1+a+b+2=0, ①
当x=-2时,f(-2)=0,即
16+4a+2b+2=0, ②
由①,②联立,则有
练习十
1.计算:
(1)(a- 2b+c)(a+2b-c)-(a+2b+c)2;
(2)(x+y)4(x-y)4;
(3)(a+b+c)(a2+b2+c2-ab-ac-bc).
2.化简:
(1)(2x-y+z-2c+m)(m+y-2x-2c-z);
(2)(a+3b)(a2-3ab+9b2)-(a-3b)(a2+3ab+9b2);
(3)(x+y)2(y+z-x)(z+x-y)+(x-y)2(x+y+z)×(x+y-z).
3.已知z2=x2+y2,化简
(x+y+z)(x-y+z)(-x+y+z)(x+y-z).
4.设f(x)=2x3+3x2-x+2,求f(x)除以x2-2x+3所得的商式和余式.
分类导航
最新更新
推荐热门