当前位置:99幼教网小学学习网小学数学教学五年级数学五年级数学课外辅导带余数的除法讲解» 正文

带余数的除法讲解

[02-03 21:38:28]   来源:http://www.99youjiao.com  五年级数学课外辅导   阅读:8414

概要:前面我们讲到除法中被除数和除数的整除问题.除此之外,例如:16÷3=5…1,即16=5×3+1.此时,被除数除以除数出现了余数,我们称之为带余数的除法。一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r。当r=0时,我们称a能被b整除。当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商).用带余除式又可以表示为a÷b=q…r,0≤r<b。例1 一个两位数去除251,得到的余数是41.求这个两位数。分析 这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。解:∵被除数÷除数=商…余数,即被除数=除数×商+余数,∴251=除数×商+41,251-41=除数×商,∴210=除数×商。∵210=2×3×5×7,&there

带余数的除法讲解,标签:数学学习方法,小学数学教学案例,http://www.99youjiao.com

  前面我们讲到除法中被除数和除数的整除问题.除此之外,例如:16÷3=5…1,即16=5×3+1.此时,被除数除以除数出现了余数,我们称之为带余数的除法。

  一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r。

  当r=0时,我们称a能被b整除。

  当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商).用带余除式又可以表示为a÷b=q…r,0≤r<b。

  例1 一个两位数去除251,得到的余数是41.求这个两位数。

  分析 这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。

  解:∵被除数÷除数=商…余数,

  即被除数=除数×商+余数,

  ∴251=除数×商+41,

  251-41=除数×商,

  ∴210=除数×商。

  ∵210=2×3×5×7,

  ∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70。

  例2 用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?

  解:∵被除数=除数×商+余数,

  即被除数=除数×40+16。

  由题意可知:被除数+除数=933-40-16=877,

  ∴(除数×40+16)+除数=877,

  ∴除数×41=877-16,

  除数=861÷41,

  除数=21,

  ∴被除数=21×40+16=856。

  答:被除数是856,除数是21。

  例3 某年的十月里有5个星期六,4个星期日,问这年的10月1日是星期几?

  解:十月份共有31天,每周共有7天,

  ∵31=7×4+3,

  ∴根据题意可知:有5天的星期数必然是星期四、星期五和星期六。

  ∴这年的10月1日是星期四。

  例4 3月18日是星期日,从3月17日作为第一天开始往回数(即3月16日(第二天),15日(第三天),…)的第1993天是星期几?

  解:每周有7天,1993÷7=284(周)…5(天),

  从星期日往回数5天是星期二,所以第1993天必是星期二.

  例5 一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数。

  这是一道古算题.它早在《孙子算经》中记有:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”

  关于这道题的解法,在明朝就流传着一首解题之歌:“三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知.”意思是,用除以3的余数乘以70,用除以5的余数乘以21,用除以7的余数乘以15,再把三个乘积相加.如果这三个数的和大于105,那么就减去105,直至小于105为止.这样就可以得到满足条件的解.其解法如下:

  方法1:2×70+3×21+2×15=233

  233-105×2=23

  符合条件的最小自然数是23。

  例5 的解答方法不仅就这一种,还可以这样解:

  方法2:[3,7]+2=23

  23除以5恰好余3。

  所以,符合条件的最小自然数是23。

  方法2的思路是什么呢?让我们再来看下面两道例题。

  例6 一个数除以5余3,除以6余4,除以7余1,求适合条件的最小的自然数。

  分析 “除以5余3”即“加2后被5整除”,同样“除以6余4”即“加2后被6整除”。

  解:[5,6]-2=28,即28适合前两个条件。

  想:28+[5,6]×?之后能满足“7除余1”的条件?

  28+[5,6]×4=148,148=21×7+1,

  又148<210=[5,6,7]

  所以,适合条件的最小的自然数是148。

  例7 一个数除以3余2,除以5余3,除以7余4,求符合条件的最小自然数。

  解:想:2+3×?之后能满足“5除余3”的条件?

  2+3×2=8。

  再想:8+[3,5]×?之后能满足“7除余4”的条件?

  8+[3,5]×3=53。

  ∴符合条件的最小的自然数是53。

  归纳以上两例题的解法为:逐步满足条件法.当找到满足某个条件的数后,为了再满足另一个条件,需做数的调整,调整时注意要加上已满足条件中除数的倍数。

  解这类题目还有其他方法,将会在有关“同余”部分讲到。

  例8 一个布袋中装有小球若干个.如果每次取3个,最后剩1个;如果每次取5个或7个,最后都剩2个.布袋中至少有小球多少个?

  解:2+[5,7]×1=37(个)

  ∵37除以3余1,除以5余2,除以7余2,

  ∴布袋中至少有小球37个。

  例9 69、90和125被某个正整数N除时,余数相同,试求N的最大值。

  分析 在解答此题之前,我们先来看下面的例子:

  15除以2余1,19除以2余1,

  即15和19被2除余数相同(余数都是1)。

  但是19-15能被2整除.

  由此我们可以得到这样的结论:如果两个整数a和b,均被自然数m除,余数相同,那么这两个整数之差(大-小)一定能被m整除。

  反之,如果两个整数之差恰被m整除,那么这两个整数被m除的余数一定相同。

  例9可做如下解答:

  ∵三个整数被N除余数相同,

  ∴N|(90-69),即N|21,N|(125-90),即N|35,

  ∴N是21和35的公约数。

  ∵要求N的最大值,

  ∴N是21和35的最大公约数。

  ∵21和35的最大公约数是7,

  ∴N最大是7。


Tag:五年级数学课外辅导数学学习方法,小学数学教学案例小学数学教学 - 五年级数学 - 五年级数学课外辅导

上一篇:小学五年级数学学习方法
《带余数的除法讲解》相关文章
  • 带余数的除法讲解
  • 带余数的除法讲解
  • 在百度中搜索相关文章:带余数的除法讲解
  • 在谷歌中搜索相关文章:带余数的除法讲解
  • 在soso中搜索相关文章:带余数的除法讲解
  • 在搜狗中搜索相关文章:带余数的除法讲解